A case study in double categories

Robert Paré
UNAM - Seminar

February 10, 2021

Part I

Morphisms

Ring

- The category Ring has (not necessarily commutative) rings with 1 as objects and homomorphisms preserving 1 as morphisms
- This is a very good category. It's monadic over Set, so complete and cocomplete. It's locally finitely presentable, etc.
- So why mess with it?

Bimodules

- Given rings R and S, an S - R-bimodule M is simultaneously a left S-module and a right R-module whose left and right actions commute

$$
(s m) r=s(m r)
$$

- If T is another ring and N a T-S-bimodule, the tensor product over $S, N \otimes s M$ is naturally a T - R-bimodule. We have associativity isomorphisms

$$
P \otimes_{T}\left(N \otimes_{S} M\right) \cong\left(P \otimes_{T} N\right) \otimes_{S} M
$$

and unit isomorphisms

$$
M \otimes_{R} R \cong M \cong S \otimes_{S} M
$$

- To keep track of the various rings involved and what's acting on what and on which side we can write

$$
M: R \longrightarrow S
$$

to mean that M is an S - R-bimodule

- The tensor product looks like a composition

Bicategories

- Rings with bimodules as morphisms is not a category but a bicategory, Bim
- In a bicategory we have objects and morphisms which compose, but composition is only associative and unitary up to isomorphism
- To express this isomorphism we need morphisms between morphisms

called 2-cells

$\mathcal{B i m}$

- In our example Bim
- Objects are rings
- Morphisms (1-cells) are bimodules
- A 2-cell

is a linear map of bimodules, i.e. a function such that

$$
\begin{gathered}
\phi\left(m_{1}+m_{2}\right)=\phi\left(m_{1}\right)+\phi\left(m_{2}\right) \\
\phi(s m)=s \phi(m) \\
\phi(m r)=\phi(m) r
\end{gathered}
$$

- Bim is a very good bicategory
- Cartesian bicategory
- Biclosed

$$
\frac{M \rightarrow N \otimes_{T} P}{N \otimes_{S} M \rightarrow P} \frac{N \rightarrow P \oslash_{R} M}{N}
$$

Double categories

- A double category \mathbb{A} has objects $(A, B, C, D$ below) and two kinds of morphism, strong, which we call horizontal (f, g below) and weak, or vertical (v, w below) These are related by a further kind of morphism, double cells as in

- The horizontal arrows form a category HorA with composition denoted by juxtaposition and identities by 1_{A}. Cells can also be composed horizontally forming a category
- The vertical arrows compose to give a bicategory Vert \mathbb{A} whose 2-cells are the globular cells of \mathbb{A}, i.e. those with identities on the top and bottom

Vertical composition is denoted by \bullet and vertical identities by id_{A}

Example

$\mathbb{R} e l$ has sets as objects and functions as horizontal arrows, so $\operatorname{Hor} \mathbb{R} e l=$ Set. A vertical arrow $R: X \longrightarrow Y$ is a relation between X and Y and there is a unique cell

if (and only if) we have

$$
\forall_{x, y}\left(x \sim_{R} y \Rightarrow f(x) \sim_{R^{\prime}} g(y)\right)
$$

The double category \mathbb{R} ing

- Objects are rings
- Horizontal arrows are homomorphisms
- Vertical arrows are bimodules
- A double cell

is a linear map in the sense that it preserves addition and is compatible with the actions

$$
\begin{aligned}
& \phi(s m)=g(s) \phi(m) \\
& \phi(m r)=\phi(m) f(r)
\end{aligned}
$$

- Vertical composition is \otimes

Companions

- Let \mathbb{A} be a double category, $f: A \longrightarrow B$ a horizontal arrow, and $v: A \longrightarrow B$ a vertical one in \mathbb{A}. We say that v is a companion of f if we are given cells, the binding cells, α and β, such that

Companions, when they exist, are unique up to isomorphism, and we use the notation f_{*} to denote a choice of companion for f

- In $\mathbb{R e l}$, every function $f: A \longrightarrow B$ has a companion, viz. its graph $\operatorname{Gr}(f) \subseteq A \times B$

Companions in \mathbb{R} ing

Proposition

(a) In \mathbb{R} ing, every homomorphism $f: R \longrightarrow S$ has a companion, namely S considered as an S - R-bimodule with actions \diamond given by

$$
\begin{aligned}
s^{\prime} \diamond s & =s^{\prime} s \\
s_{\diamond r} & =s f(r)
\end{aligned}
$$

(b) A bimodule $M: R \longrightarrow S$ is a companion, i.e. is of the form f_{*} for some horizontal arrow f, if and only if it is free of rank 1 as a left S-module
(c) Homomorphisms corresponding to different free generators are related by conjugation by a unit of S

Proof of (b) and (c)

Proof of (b) and (c)
(b) Let $M: R \longrightarrow \longrightarrow S$ is freely generated by $m \in M$

Proof of (b) and (c)
(b) Let $M: R \longrightarrow \longrightarrow S$ is freely generated by $m \in M$

For each $r \in R$ there is a unique $s \in S$ such that $m r=s m$

Proof of (b) and (c)
(b) Let $M: R \longrightarrow S$ is freely generated by $m \in M$

For each $r \in R$ there is a unique $s \in S$ such that $m r=s m$
Let $f(r)$ be that s, so that f is uniquely determined by $m r=f(r) m$

Proof of (b) and (c)
(b) Let $M: R \longrightarrow \longrightarrow S$ is freely generated by $m \in M$

For each $r \in R$ there is a unique $s \in S$ such that $m r=s m$
Let $f(r)$ be that s, so that f is uniquely determined by $m r=f(r) m$
$f\left(r_{1}+r_{2}\right) m=m\left(r_{1}+r_{2}\right)=m r_{1}+m r_{2}=f\left(r_{1}\right) m+f\left(r_{2}\right) m=\left(f\left(r_{1}\right)+f\left(r_{2}\right)\right) m$
So $f\left(r_{1}+r_{2}\right)=f\left(r_{1}\right)+f\left(r_{2}\right)$

Proof of (b) and (c)
(b) Let $M: R \longrightarrow \longrightarrow S$ is freely generated by $m \in M$

For each $r \in R$ there is a unique $s \in S$ such that $m r=s m$
Let $f(r)$ be that s, so that f is uniquely determined by $m r=f(r) m$
$f\left(r_{1}+r_{2}\right) m=m\left(r_{1}+r_{2}\right)=m r_{1}+m r_{2}=f\left(r_{1}\right) m+f\left(r_{2}\right) m=\left(f\left(r_{1}\right)+f\left(r_{2}\right)\right) m$
So $f\left(r_{1}+r_{2}\right)=f\left(r_{1}\right)+f\left(r_{2}\right)$
Similarly $f\left(r_{1} r_{2}\right)=f\left(r_{1}\right) f\left(r_{2}\right)$ and $f(1)=1$

Proof of (b) and (c)

(b) Let $M: R \longrightarrow \longrightarrow S$ is freely generated by $m \in M$

For each $r \in R$ there is a unique $s \in S$ such that $m r=s m$
Let $f(r)$ be that s, so that f is uniquely determined by $m r=f(r) m$
$f\left(r_{1}+r_{2}\right) m=m\left(r_{1}+r_{2}\right)=m r_{1}+m r_{2}=f\left(r_{1}\right) m+f\left(r_{2}\right) m=\left(f\left(r_{1}\right)+f\left(r_{2}\right)\right) m$
So $f\left(r_{1}+r_{2}\right)=f\left(r_{1}\right)+f\left(r_{2}\right)$
Similarly $f\left(r_{1} r_{2}\right)=f\left(r_{1}\right) f\left(r_{2}\right)$ and $f(1)=1$
(c) Suppose $n \in M$ is another free generator

Proof of (b) and (c)

(b) Let $M: R \longrightarrow \longrightarrow S$ is freely generated by $m \in M$

For each $r \in R$ there is a unique $s \in S$ such that $m r=s m$
Let $f(r)$ be that s, so that f is uniquely determined by $m r=f(r) m$
$f\left(r_{1}+r_{2}\right) m=m\left(r_{1}+r_{2}\right)=m r_{1}+m r_{2}=f\left(r_{1}\right) m+f\left(r_{2}\right) m=\left(f\left(r_{1}\right)+f\left(r_{2}\right)\right) m$
So $f\left(r_{1}+r_{2}\right)=f\left(r_{1}\right)+f\left(r_{2}\right)$
Similarly $f\left(r_{1} r_{2}\right)=f\left(r_{1}\right) f\left(r_{2}\right)$ and $f(1)=1$
(c) Suppose $n \in M$ is another free generator

There is an invertible element $a \in S$ such that $n=a m$

Proof of (b) and (c)

(b) Let $M: R \longrightarrow S$ is freely generated by $m \in M$

For each $r \in R$ there is a unique $s \in S$ such that $m r=s m$
Let $f(r)$ be that s, so that f is uniquely determined by $m r=f(r) m$
$f\left(r_{1}+r_{2}\right) m=m\left(r_{1}+r_{2}\right)=m r_{1}+m r_{2}=f\left(r_{1}\right) m+f\left(r_{2}\right) m=\left(f\left(r_{1}\right)+f\left(r_{2}\right)\right) m$
So $f\left(r_{1}+r_{2}\right)=f\left(r_{1}\right)+f\left(r_{2}\right)$
Similarly $f\left(r_{1} r_{2}\right)=f\left(r_{1}\right) f\left(r_{2}\right)$ and $f(1)=1$
(c) Suppose $n \in M$ is another free generator

There is an invertible element $a \in S$ such that $n=a m$
If g is the homomorphism determined by n,

Proof of (b) and (c)

(b) Let $M: R \longrightarrow S$ is freely generated by $m \in M$

For each $r \in R$ there is a unique $s \in S$ such that $m r=s m$
Let $f(r)$ be that s, so that f is uniquely determined by $m r=f(r) m$
$f\left(r_{1}+r_{2}\right) m=m\left(r_{1}+r_{2}\right)=m r_{1}+m r_{2}=f\left(r_{1}\right) m+f\left(r_{2}\right) m=\left(f\left(r_{1}\right)+f\left(r_{2}\right)\right) m$
So $f\left(r_{1}+r_{2}\right)=f\left(r_{1}\right)+f\left(r_{2}\right)$
Similarly $f\left(r_{1} r_{2}\right)=f\left(r_{1}\right) f\left(r_{2}\right)$ and $f(1)=1$
(c) Suppose $n \in M$ is another free generator

There is an invertible element $a \in S$ such that $n=a m$
If g is the homomorphism determined by n,
then $g(r) n=n r=a m r=a f(r) m=a f(r) a^{-1} n$

Proof of (b) and (c)

(b) Let $M: R \longrightarrow S$ is freely generated by $m \in M$

For each $r \in R$ there is a unique $s \in S$ such that $m r=s m$
Let $f(r)$ be that s, so that f is uniquely determined by $m r=f(r) m$
$f\left(r_{1}+r_{2}\right) m=m\left(r_{1}+r_{2}\right)=m r_{1}+m r_{2}=f\left(r_{1}\right) m+f\left(r_{2}\right) m=\left(f\left(r_{1}\right)+f\left(r_{2}\right)\right) m$
So $f\left(r_{1}+r_{2}\right)=f\left(r_{1}\right)+f\left(r_{2}\right)$
Similarly $f\left(r_{1} r_{2}\right)=f\left(r_{1}\right) f\left(r_{2}\right)$ and $f(1)=1$
(c) Suppose $n \in M$ is another free generator

There is an invertible element $a \in S$ such that $n=a m$
If g is the homomorphism determined by n,
then $g(r) n=n r=a m r=a f(r) m=a f(r) a^{-1} n$
so $g(r)=a f(r) a^{-1}$

Conjoints

- Let $f: A \longrightarrow B$ be a horizontal arrow in a double category \mathbb{A} and $v: B \longrightarrow A$ a vertical one. We say that v is conjoint to f if we are given cells ψ and χ (conjunctions) such that
- In \mathbb{R} ing, every homomorphism $f: R \longrightarrow S$ has a conjoint f^{*}, namely $S: S \longrightarrow R$ with left action by R given by "restriction"

$$
r \diamond s=f(r) s
$$

Rank 2

- Homomorphisms $f: R \longrightarrow S$ correspond to bimodules $M: R \longrightarrow S$ which are free on one generator as left S-modules
- What if M is free on 2 generators?
- Assume M free on m_{1}, m_{2} as a left S-module. Nothing is said about the right action (as before). Then for each $r \in R$ we get unique $s_{11}, s_{12}, s_{21}, s_{22} \in S$ such that

$$
\begin{aligned}
m_{1} r & =s_{11} m_{1}+s_{12} m_{2} \\
m_{2} r & =s_{21} m_{1}+s_{22} m_{2}
\end{aligned}
$$

Let's denote $s_{i j}$ by $f_{i j}(r)$. So to each r we associate not 2 but 4 elements of S or rather a 2×2 matrix in S

Rank p

If M is free on p generators m_{1}, \ldots, m_{p} :

$$
m_{i} r=\sum_{j=1}^{p} f_{i j}(r) m_{j}
$$

Theorem

(a) Any matrix-valued homomorphism $f: R \longrightarrow \operatorname{Mat}_{p}(S)$ induces an S - R-bimodule structure on $S^{(p)}$
(b) Any S - R-bimodule $M: R \longrightarrow S$ which is free on p generators as a left S-module is isomorphic (as on S - R-bimodule) to $S^{(p)}$ with R-action induced by a homomorphism $f: R \longrightarrow \operatorname{Mat}_{p}(S)$ as in (a)
(c) Homomorphisms corresponding to different free generators are related by conjugation by an invertible $p \times p$ matrix A in $\operatorname{Mat}_{p}(S)$

Example

(Pairs of homomorphisms)
Let $f, g: R \longrightarrow S$ be homomorphisms. Then we get a homomorphism $h: R \longrightarrow \operatorname{Mat}_{2}(S)$ given by

$$
h(r)=\left[\begin{array}{lr}
f(r) & 0 \\
0 & g(r)
\end{array}\right]
$$

Example

(Derivations)
Let $f: R \longrightarrow S$ be a homomorphism and d an f-derivation, i.e. an additive function $d: R \longrightarrow S$ such that

$$
d\left(r r^{\prime}\right)=d(r) f\left(r^{\prime}\right)+f(r) d\left(r^{\prime}\right)
$$

Then we get a homomorphism $R \rightarrow \operatorname{Mat}_{2}(S)$

$$
r \longmapsto\left[\begin{array}{rr}
f(r) & 0 \\
d(r) & f(r)
\end{array}\right]
$$

Example

More generally we can consider the subring of lower triangular matrices

$$
L=\left\{\left.\left[\begin{array}{cc}
s & 0 \\
s^{\prime} & s^{\prime \prime}
\end{array}\right] \right\rvert\, s, s^{\prime}, s^{\prime \prime} \in S\right\}
$$

Then a homomorphism $R \longrightarrow \operatorname{Mat}_{2}(S)$ that factors through L corresponds to a pair of homomorphisms $f, g: R \longrightarrow S$ and a derivation d from f to g, i.e. an additive function $d: R \longrightarrow S$ such that

$$
d\left(r r^{\prime}\right)=d(r) f\left(r^{\prime}\right)+g(r) d\left(r^{\prime}\right)
$$

A graded category of rings

- Homomorphisms $f: R \longrightarrow \operatorname{Mat}_{p}(S)$ and $g: S \longrightarrow \operatorname{Mat}_{q}(T)$ correspond to bimodules

$$
S^{(p)}: R \longrightarrow S \quad \text { and } \quad T^{(q)}: S \longrightarrow T
$$

and we can compose these

$$
T^{(q)} \otimes_{s} S^{(p)} \cong T^{(p q)}
$$

- This gives a composite gf

$$
R \xrightarrow{f} \operatorname{Mat}_{p}(S) \xrightarrow{\operatorname{Mat}_{p}(g)} \operatorname{Mat}_{p} \operatorname{Mat}_{q}(T) \cong \operatorname{Mat}_{p q}(T)
$$

Thus we first apply f to an element $r \in R$ to get a $p \times p$ matrix in S, and then apply g to each entry separately to get a $p \times p$ block matrix of $q \times q$ matrices, and then consider this as a $(p q) \times(p q)$ matrix

Theorem

With this composition we get an $\left(\mathbb{N}^{+}, \cdot\right)$-graded category Matring whose objects are rings and whose morphisms of degree p are homomorphisms into $p \times p$ matrices:

$$
\frac{R \stackrel{(p, f)}{\longrightarrow} S \text { in Matring }}{f: R \longrightarrow \operatorname{Mat}_{p}(S) \text { in Ring }}
$$

The graded double category of rings
The double category Matring

- Objects rings
- Horizontal arrows $(p, f): R \longrightarrow R^{\prime}$
- Vertical arrows are bimodules $M: R \longrightarrow S$
- A double cell
is a linear map (a cell in \mathbb{R} ing)

where $M a t_{q, p}\left(M^{\prime}\right)$ is the bimodule of $q \times p$ matrices with entries in M^{\prime}, with the $M a t_{q}\left(S^{\prime}\right)$ action given by matrix multiplication on the left, and similarly for $M_{p}\left(R^{\prime}\right)$

Properties of Matring

Theorem
(1) Matring is a double category
(2) Every horizontal arrow has a companion
(3) Every horizontal arrow has a conjoint
(4) The vertically full double subcategory determined by the morphisms of degree 1 is isomorphic to \mathbb{R} ing

Cauchy completeness

- If a horizontal arrow $f: A \longrightarrow B$ in a double category \mathbb{A} has a companion f_{*} and a conjoint f^{*} then f_{*} is left adjoint to f^{*} in \mathcal{V} ert \mathbb{A}
- Say that B is Cauchy complete if every adjoint pair $v \dashv u, v: A \longrightarrow B$, $u: B \longrightarrow A$ is of the form $f_{*} \dashv f^{*}$ for some $f: A \longrightarrow B$
- \mathbb{A} is Cauchy if every object is Cauchy complete

Example
$\mathbb{R e l}$ is Cauchy

Characterization for bimodules

The following theorem is well-known

Theorem

A bimodule $M: R \longrightarrow S$ has a right adjoint in $\mathcal{B i m}$ if and only if it is finitely generated and projective as a left S-module

Finitely generated projective

M is finitely generated, by m_{1}, \ldots, m_{p} say, if and only if the S-linear map

$$
\tau: S^{(p)} \longrightarrow M
$$

$\tau\left(s_{1} \ldots s_{p}\right)=\sum_{i=1}^{p} s_{i} m_{i}$ is surjective. If M is S-projective, then τ splits, i.e. there is an S-linear map

$$
\sigma: M \longrightarrow S^{(p)}
$$

such that $\tau \sigma=1_{M}$. In fact, M is a finitely generated and projective S-module if and only if there exist p, τ, σ such that $\tau \sigma=1_{M}$

Let the components of σ be $\sigma_{1}, \ldots, \sigma_{p}: M \longrightarrow S$. Then $\tau \sigma=1_{M}$ means that for every $m \in M$ we will have

$$
m=\sum_{i=1}^{p} \sigma_{i}(m) m_{i}
$$

i.e. the σ_{i} provide an S-linear choice of coordinates for m relative to the generators $m_{1} \ldots m_{p}$. All of this is independent of R

Non-unital homomorphisms

For any r we can write

$$
m_{i} r=\sum_{j=1}^{p} \sigma_{j}\left(m_{i} r\right) m_{j}
$$

If we let $f_{i j}(r)=\sigma_{j}\left(m_{i} r\right)$ we get the same formula as for Matring (on frame 15)

$$
m_{i} r=\sum_{j=1}^{p} f_{i j}(r) m_{j}
$$

Theorem

(1) The functions $f_{i j}$ define a non-unital homomorphism $f: R \longrightarrow \operatorname{Mat}_{p}(S)$
(2) Any such homomorphism comes from a bimodule which is finitely generated and projective as a left S-module
(3) Two representations (p, f) and (q, g) of the same S - R-bimodule (finitely generated projective over S) are related as follows: there is a $q \times p$ matrix A and a $p \times q$ matrix B, both with entries in S, such that
(a) $\operatorname{Af}(1)=A$ and $A f(r)=g(r) A$
(b) $B g(1)=B$ and $B g(r)=f(r) B$
(c) $A B=g(1)$ and $B A=f(1)$

Amplifying homomorphisms

Non-unital homomorphisms $R \longrightarrow \operatorname{Mat}_{p}(S)$ have already appeared in the quantum field theory literature
(see e.g. Szlachanyi, K, Vecsernyes, K, Quantum symmetry and braid group statistics in G-spin models, Commun. Math. Phys. 156, 127-168 (1993)) where they are called amplifying homomorphisms or amplimorphisms for short

The double category Ampli

- Objects: rings
- Horizontal arrows: amplimorphisms $R \longrightarrow S$,
- Vertical arrows: bimodules $M: R \longrightarrow S$
- Cells:

i.e. additive functions $\phi: M \longrightarrow M a t_{q, p}\left(M^{\prime}\right)$ such that

$$
\phi(m r)=\phi(m) f(r) \quad \phi(s m)=g(s) \phi(m)
$$

Theorem

(1) Ampli is a double category
(2) Ampli is vertically self dual
(3) Every horizontal arrow has a companion and a conjoint
(4) Ampli is Cauchy

Part II

Functors

Monadic

Ring is monadic over Set
$U:$ Ring \longrightarrow Set Forgetful
$F:$ Set \longrightarrow Ring Free
$F(X)=\mathbb{Z}\{X\}=$ Ring of polynomials with integer coefficients in the non-commuting variables $x, y, z \ldots \in X$
$F \dashv U$

Gives a monad $T=U F$ on Set
Ring is the category of algebras for T

Can we extend this to $\mathbb{R} i n g ?$

Set

Set is the double category of sets

- Objects are sets
- Horizontal arrows are functions
- Vertical arrows are spans
- Cells are span morphisms

- Vertical composition uses pullbacks

Spans

A span is to be thought of as a constructive or intensional relation Suppose we have a span

How can $x \in X$ be related to $y \in Y$?
If there's an $a \in A$ such that $x=p(a)$ and $y=q(a)$ a is the reason (or proof) that x is related to y

$$
x \sim_{a} y
$$

Vertical composition

How can $x \in X$ be related to $z \in Z$?

There should be a y and "reasons" a and b such that

$$
x \sim_{a} y \text { and } y \sim_{b} z
$$

Hence the pullback

The forgetful functor $U: \mathbb{R}$ ing \longrightarrow Set
$U R=$ Underlying set of R
$U f=$ Underlying function of f
For a bimodule $M: R \longrightarrow S$

For a cell

Why this U?

Recall: If M is free over S on one generator m, it induces a homomorphisms $f: R \longrightarrow S$. $f(r)$ is the unique s such that

$$
s m=m r
$$

If m is not a free generator we just get a relation, but a constructive one: m is the reason that s is related to r

$$
s \sim_{m} r \Longleftrightarrow s m=m r
$$

Note that \sim_{m} is a "ring congruence"
$-s \sim_{m} r \& s^{\prime} \sim_{m} r^{\prime} \Rightarrow s+s^{\prime} \sim_{m} r+r^{\prime}$
$-s \sim_{m} r \& s^{\prime} \sim_{m} r^{\prime} \Rightarrow s s^{\prime} \sim_{m} r r^{\prime}$
$-s \sim_{m} r \& s \sim_{m} r^{\prime} \& s^{\prime} \sim_{m} r^{\prime} \Rightarrow s^{\prime} \sim_{m} r$

Preservation of composition

U preserves horizontal composition of arrows and cells But it doesn't preserve vertical composition!
Consider $R \xrightarrow{M} S \xrightarrow{\sim} T$

$$
\begin{gathered}
U(N \otimes s M)=\left\{\left(t, \sum n_{i} \otimes m_{i}, r\right) \mid \sum t n_{i} \otimes m_{i}=\sum n \otimes m_{i} r\right\} \\
U(N) \times_{U(S)} U(M)=\{(t, n, s, m, r) \mid t n=n s \quad \& \quad s m=m r\}
\end{gathered}
$$

We have a comparison morphism

$$
\begin{gathered}
\Upsilon_{2}: U(N) \times_{U(S)} U(M) \longrightarrow U\left(N \otimes_{s} M\right) \\
(t, n, s, m, r) \longmapsto(t, n \otimes m, r)
\end{gathered}
$$

There's also a comparison

$$
\begin{gathered}
\Upsilon_{0}: \operatorname{Id}_{U R} \longrightarrow U\left(\operatorname{ld}_{R}\right) \\
r \longmapsto(r, 1, r)
\end{gathered}
$$

Lax double functors
U is a lax double functor

- Υ_{0} and Υ_{2} are horizontally natural
- Satisfy associativity and unit conditions, formally the same as for lax functors of bicategories

Adjoints to lax double functors

Given a lax double functor $U: \mathbb{B} \longrightarrow \mathbb{A}$ what does it mean for it to have a left adjoint?

- U has to have a left adjoint F at the level of objects and horizontal arrows

$$
\frac{F A \longrightarrow B}{A \longrightarrow U B}
$$

- U has to have a left adjoint at the level of vertical arrows and cells

and the vertical domain and codomain of $F v$ must be $F A$ and $F A^{\prime}$ Then the mates calculus automatically makes F into an oplax double functor

This is the general situation for adjunctions $F \dashv U$ between double categories $U: \mathbb{B} \longrightarrow \mathbb{A}, F: \mathbb{A} \longrightarrow \mathbb{B}, F$ is oplax and U is lax

Adjoint to U

$U: \mathbb{R i n g} \longrightarrow$ Set does have a left adjoint F
$F X=\mathbb{Z}\{X\}=$ Free ring on X
$X \quad F(p, q)=\mathbb{Z}\{Y\} A \mathbb{Z}\{X\} / q A p$

- $\mathbb{Z}\{Y\} A \mathbb{Z}\{X\}$ is the free $\mathbb{Z}\{Y\}-\mathbb{Z}\{X\}$ bimodule generated by A (finite sums of things like

$$
\left.\left(2 y_{1} y_{2}-y_{2} y_{1}+y_{3}^{3}\right) a\left(x_{2}^{2}+3 x_{1} x_{3}\right)\right)
$$

- $q A p$ is the subbimodule generated by $\{q(a) a-a p(a) \mid a \in A\}$
F is truly oplax - not pseudo nor even normal

Monad?

Given an oplax-lax adjunction, the composite $T=U F$ is neither lax nor oplax Enough structure is there to define algebras $T A \xrightarrow{a} A$, horizontal morphisms $(A, a) \xrightarrow{f}(C, c)$
Vertical morphisms

and cells

$$
\begin{aligned}
(A, a) & \xrightarrow{f}(C, c) \\
(v, \alpha) & \stackrel{\gamma}{\Rightarrow} \quad \downarrow(w, \beta) \\
\downarrow & \downarrow \\
(B, b) & \rightarrow \\
\hline g & (D, d)
\end{aligned}
$$

What we can get

Horizontal morphisms can be composed and cells composed horizontally But there is no way to compose vertical arrows! (Nor compose cells vertically) There are forgetful V and free G and a comparison Φ :

They are horizontally functorial, but that's it If we allow ourselves to use the F and U we can make $\mathbb{A l g}(T)$ into a virtual double category
C.f. Cruttwell and Shulman, A unified framework for generalized multicategories, TAC Vol. 24 (2010)

Questions

1. Is there a workable theory for monads coming from oplax-lax adjunctions?
2. How do the double categories Matring and Ampli fit in?
3.

¡Gracias!

